RESEARCH

20220217 Cocktail strategy based on a dual function nanoparticle and immune activator for effective tumor suppressive

POSTTIME:Mar. 13, 2022 NUM:

Li, Q., Chen, Q., Yang, X., Zhang, Y., Lv, L., Zhang, Z., Zeng, S., Lv, J., Liu, S.*, and Fu, B.* (2022). Cocktail strategy based on a dual function nanoparticle and immune activator for effective tumor suppressive. J Nanobiotechnology 20, 84.(付碧石)


Abstract

Background: Immune checkpoint inhibitor-mediated immunotherapy cannot be carried out on a large scale clinically due to its low universality. In recent years, cyclic guanosine monophosphate synthase/interferon gene stimulating factor (cGAS/STING)-mediated innate immune signaling pathway-mediated immunotherapy has attracted more and more attention. In addition, metabolic inhibitors also show good effects on tumor treatment, but their application is often limited because of their large first pass effect or difficult administration.

Methods: The particle size and potential parameters were measured by DLS. In order to determine the optimal ratio of the two drugs, we calculated the CI value of different nanoparticles through MTT experiment, and simulated their synergistic effect through Gaussian software. Then the morphology and crystal form of the best proportion of drugs were studied by TEM and XRD. The anti-tumor mechanism of composite nanoparticles was confirmed by the determination of metabolic related indexes, Q-PCR and WB. The antitumor effect and immune activation effect were comprehensively evaluated by in vivo and in vitro experiments.

Results: Here, we found and synthesized BCP nanoparticles ((BPA + CPI) @ PLGA NPs) which can effectively reduce the metabolism of tumor cells and inhibit cell proliferation. At the same time, the release of mitochondrial DNA (mtDNA) caused by mitochondrial metabolism disorder further activated the cGAS/STING signal pathway in Hepa1-6 cells. We found that the drug-treated Hepa1-6 cells had obvious TBK1 phosphorylation and STING dimerization. Combined with STING agonist, it could effectively promote the activation of CD8 T cells and enhanced the therapeutic effect on liver cancer.

Conclusion: Our results showed that PLGA nanocarrier can successfully improve the dosage forms of two metabolic inhibitors and show the effect of synergistic therapy. BCP nanoparticles can also activate the innate immunity of tumor cells and significantly enhance tumor inhibition after combined with STING agonists. This study has high reference and transformation value for the combined treatment of immunosuppression and metabolic inhibition.

原文链接:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851817/pdf/12951_2022_Article_1241.pdf


Pre:20220301 Efficient targeted insertion of large DNA fragment without DNA donor

Next:20220124 MARCH3 negatively regulates IL-3-triggered inflammatory response by mediating K48-linked polyubiquitination and degradation of IL-3Rα